Our team of experts and scientists formulate each product with the use of extensive research. We rely on a body of studies to make sure we’re using the best ingredients to support our customers health and well-being.:
References:
1) Pasca, S. P., Nemes, B., Vlase, L., Gagyi, C. E., Dronca, E., Miu, A. C., & Dronca, M. (2006). High levels of homocysteine and low serum paraoxonase 1 arylesterase activity in children with autism. Life Sciences, 78(19), 2244-2248. https://doi.org/10.1016/j.lfs.2005.09.040
2) Gaita, L., Manzi, B., Sacco, R., Lintas, C., Altieri, L., Lombardi, F., Pawlowski, T. L., Redman, M., Craig, D. W., Huentelman, M. J., Ober-Reynolds, S., Brautigam, S., Melmed, R., Smith, C. J., Marsillach, J., Camps, J., Curatolo, P., Persico, A. M., & Glessner, J. T. (2010). Decreased serum arylesterase activity in autism spectrum disorders. Psychiatry Research, 180(2-3), 105-113. https://doi.org/10.1016/j.psychres.2010.04.010
3) Buyske, S., Williams, T. A., Mars, A. E., Stenroos, E. S., Ming, S. X., Wang, R., Sreenath, M., Factura, M. F., Reddy, C., Lambert, G. H., & Johnson, W. G. (2006). Analysis of case-parent trios at a locus with a deletion allele: association of GSTM1 with autism. BMC Genetics, 7, 8. https://doi.org/10.1186/1471-2156-7-8
4) James SJ, Melnyk S, Jernigan S, Hubanks A, Rose S, Gaylor DW. Abnormal transmethylation/transsulfuration metabolism and DNA hypomethylation among parents of children with autism [published correction appears in J Autism Dev Disord. 2008 Nov;38(10):1976. Jill James, S [corrected to James, S Jill]]. J Autism Dev Disord. 2008;38(10):1966-1975. doi:10.1007/s10803-008-0591-5 https://doi.org/10.1002/ajmg.b.30366
5) Rossignol DA, Genuis SJ, Frye RE. Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry. 2014;4(2):e360. Published 2014 Feb 11. doi:10.1038/tp.2014.4 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944636/#bib207
6) Alabdali A, Al-Ayadhi L, El-Ansary A. A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders. Behav Brain Funct. 2014;10:14. Published 2014 Apr 28. doi:10.1186/1744-9081-10-14 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017810/
7) Zhang M, Chu Y, Meng Q, et al. A quasi-paired cohort strategy reveals the impaired detoxifying function of microbes in the gut of autistic children. Sci Adv. 2020;6(43):eaba3760. Published 2020 Oct 21. doi:10.1126/sciadv.aba3760 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577716/]
8) Detoxification and Autism - TACA https://tacanow.org/family-resources/detoxification-and-autism/
9) Theoharides TC, Tsilioni I, Patel AB, Doyle R. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Transl Psychiatry. 2016;6(6):e844. doi:10.1038/tp.2016.77 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931610/
10) Main PA, Angley MT, O'Doherty CE, Thomas P, Fenech M. The potential role of the antioxidant and detoxification properties of glutathione in autism spectrum disorders: a systematic review and meta-analysis. Nutr Metab (Lond). 2012;9:35. doi:10.1186/1743-7075-9-35 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3373368/
11) Egner, P. A., Chen, J. G., Zarth, A. T., et al. (2014). Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: Results of a randomized clinical trial in China. Cancer Prevention Research, 7(8), 813-823. https://pubmed.ncbi.nlm.nih.gov/24913818/
12) Armah, C. N., Traka, M. H., Dainty, J. R., et al. (2013). A diet rich in high-glucoraphanin broccoli interacts with genotype to reduce discordance in plasma metabolite profiles by modulating mitochondrial function. The American Journal of Clinical Nutrition, 98(3), 712-722. https://pubmed.ncbi.nlm.nih.gov/23885049/
13) Russo, M., Spagnuolo, C., Russo, G. L., et al. (2018). Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Critical Reviews in Food Science and Nutrition, 58(8), 1391-1405. https://pubmed.ncbi.nlm.nih.gov/28001083/
14) Dinkova-Kostova, A. T., & Abramov, A. Y. (2015). The emerging role of Nrf2 in mitochondrial function. Free Radical Biology and Medicine, 88(Part B), 179-188. https://pubmed.ncbi.nlm.nih.gov/25975984/
15) Singh, K., Connors, S. L., Macklin, E. A., Smith, K. D., Fahey, J. W., Talalay, P., & Zimmerman, A. W. (2014). Sulforaphane treatment of autism spectrum disorder (ASD). Proceedings of the National Academy of Sciences, 111(43), 15550-15555. https://doi.org/10.1073/pnas.1416940111
16) Zimmerman AW, Singh K, Connors SL, et al. Randomized controlled trial of sulforaphane and metabolite discovery in children with Autism Spectrum Disorder [published correction appears in Mol Autism. 2021 Jun 16;12(1):44. doi: 10.1186/s13229-021-00451-9]. Mol Autism. 2021;12(1):38. Published 2021 May 25. doi:10.1186/s13229-021-00447-5 https://pubmed.ncbi.nlm.nih.gov/34034808/
17) Momtazmanesh S, Amirimoghaddam-Yazdi Z, Moghaddam HS, Mohammadi MR, Akhondzadeh S. Sulforaphane as an adjunctive treatment for irritability in children with autism spectrum disorder: A randomized, double-blind, placebo-controlled clinical trial. Psychiatry Clin Neurosci. 2020;74(7):398-405. doi:10.1111/pcn.13016 https://pubmed.ncbi.nlm.nih.gov/32347624/
18) Ou J, Smith RC, Tobe RH, et al. Efficacy of Sulforaphane in Treatment of Children with Autism Spectrum Disorder: A Randomized Double-Blind Placebo-Controlled Multi-center Trial. J Autism Dev Disord. 2024;54(2):628-641. doi:10.1007/s10803-022-05784-9 https://pubmed.ncbi.nlm.nih.gov/36427174/
19) Bent, S., Lawton, B., Warren, T., Widjaja, F., Dang, K., Fahey, J. W., Cornblatt, B., Kinchen, J. M., Delucchi, K., & Hendren, R. L. (2018). Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Molecular Autism, 9, 35. https://doi.org/10.1186/s13229-018-0218-4
20) McGuinness G, Kim Y. Sulforaphane treatment for autism spectrum disorder: A systematic review. EXCLI J. 2020;19:892-903. Published 2020 Jun 26. doi:10.17179/excli2020-2487 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527484/
21) Magner M, Thorová K, Župová V, et al. Sulforaphane Treatment in Children with Autism: A Prospective Randomized Double-Blind Study. Nutrients. 2023;15(3):718. Published 2023 Jan 31. doi:10.3390/nu15030718 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920098/
22) Yang J, He L, Dai S, et al. Therapeutic efficacy of sulforaphane in autism spectrum disorders and its association with gut microbiota: animal model and human longitudinal studies. Front Nutr. 2024;10:1294057. Published 2024 Jan 8. doi:10.3389/fnut.2023.1294057 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10800504/
23) Tarozzi A, Angeloni C, Malaguti M, Morroni F, Hrelia S, Hrelia P. Sulforaphane as a potential protective phytochemical against neurodegenerative diseases. Oxid Med Cell Longev. 2013;2013:415078. doi:10.1155/2013/415078 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745957/
24) Calabrese V, Giordano J, Crupi R, et al. Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state. J Neurosci Res. 2017;95(5):1182-1193. doi:10.1002/jnr.23967 https://pubmed.ncbi.nlm.nih.gov/27898171/
25) Liu H, Zimmerman AW, Singh K, et al. Biomarker Exploration in Human Peripheral Blood Mononuclear Cells for Monitoring Sulforaphane Treatment Responses in Autism Spectrum Disorder. Sci Rep. 2020;10(1):5822. doi:10.1038/s41598-020-62714-4 https://pubmed.ncbi.nlm.nih.gov/32242086/
26) Houghton CA, Fassett RG, Coombes JS. Sulforaphane and Other Nutrigenomic Nrf2 Activators: Can the Clinician’s Expectation Be Matched by the Reality? Oxid Med Cell Longev. 2016;2016:7857186. doi:10.1155/2016/7857186 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736808/
27) Zhao Z, Liao G, Zhou Q, Lv D, Holthfer H, Zou H. Sulforaphane Attenuates Contrast-Induced Nephropathy in Rats via Nrf2/HO-1 Pathway. Oxid Med Cell Longev. 2016;2016:9825623. doi:10.1155/2016/9825623 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783566/
28) Shehatou GS, Suddek GM. Sulforaphane attenuates the development of atherosclerosis and improves endothelial dysfunction in hypercholesterolemic rabbits. Exp Biol Med (Maywood). 2016;241(4):426-436. doi:10.1177/1535370215609693 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935417/
29) Townsend BE, Johnson RW. Sulforaphane induces Nrf2 target genes and attenuates inflammatory gene expression in microglia from brain of young adult and aged mice. Exp Gerontol. 2016;73:42-48. doi:10.1016/j.exger.2015.11.004 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4713291/
30) Alfieri A, Srivastava S, Siow RC, et al. Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood-brain barrier disruption and neurological deficits in stroke. Free Radic Biol Med. 2013;65:1012-1022. doi:10.1016/j.freeradbiomed.2013.08.190 https://www.sciencedirect.com/science/article/abs/pii/S0891584913005935
31) Ullah MF. Sulforaphane (SFN): An Isothiocyanate in a Cancer Chemoprevention Paradigm. Medicines (Basel). 2015;2(3):141-156. doi:10.3390/medicines2030141 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456215/
32) Chen X, Liu J, Chen SY. Sulforaphane protects against ethanol-induced oxidative stress and apoptosis in neural crest cells by the induction of Nrf2-mediated antioxidant response. Br J Pharmacol. 2013;169(2):437-448. doi:10.1111/bph.12133 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651668/
33) Yanaka A. Daily intake of broccoli sprouts normalizes bowel habits in human healthy subjects. J Clin Biochem Nutr. 2018;62(1):75-82. doi:10.3164/jcbn.17-42 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773831/
34) Tortorella SM, Royce SG, Licciardi PV, Karagiannis TC. Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition. Antioxid Redox Signal. 2015;22(16):1382-1424. doi:10.1089/ars.2014.6097 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432495/
35) Guerrero-Beltrán CE, Calderón-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol. 2012;64(5):503-508. doi:10.1016/j.etp.2010.11.005 https://pubmed.ncbi.nlm.nih.gov/21129940
36) Sedlak TW, Nucifora LG, Koga M, et al. Sulforaphane Augments Glutathione and Influences Brain Metabolites in Human Subjects: A Clinical Pilot Study. Mol Neuropsychiatry. 2018;3(4):214-222. doi:10.1159/000487639 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981770/
37) Bai Y, Wang X, Zhao S, Ma C, Cui J, Zheng Y. Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation. Oxid Med Cell Longev. 2015;2015:407580. doi:10.1155/2015/407580 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637098/
38) Negrette-Guzmán M, Huerta-Yepez S, Tapia E, Pedraza-Chaverri J. Modulation of mitochondrial functions by the indirect antioxidant sulforaphane: a seemingly contradictory dual role and an integrative hypothesis. Free Radic Biol Med. 2013;65:1078-1089. doi:10.1016/j.freeradbiomed.2013.08.182 https://pubmed.ncbi.nlm.nih.gov/23999506
39) Fahey JW, Wade KL, Stephenson KK, Panjwani AA, Liu H, Cornblatt G, Cornblatt BS, Ownby SL, Fuchs E, Holtzclaw WD, Cheskin LJ. Bioavailability of Sulforaphane Following Ingestion of Glucoraphanin-Rich Broccoli Sprout and Seed Extracts with Active Myrosinase: A Pilot Study of the Effects of Proton Pump Inhibitor Administration. Nutrients. 2019 Jul; 11(7)” 1489. doi:10.33990/nu11071489 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682992/#B13-nutrients-11-01489
40) Okunade O, Niranjan K, Ghawi SK, Kuhnle G, Methven L. Supplementation of the Diet by Exogenous Myrosinase via Mustard Seeds to Increase the Bioavailability of Sulforaphane in Healthy Human Subjects after the Consumption of Cooked Broccoli. Mol Nutr Food Res. 2018;62(18):e1700980. doi:10.1002/mnfr.201700980 https://pubmed.ncbi.nlm.nih.gov/29806738/
41) A Phase II, Randomized, Double-blinded, Placebo-controlled Study of Myrosinease-enriched Glucoraphanin, a Sulforaphane Precursor System, in Autism Spectrum Disorder. University of North Carolina, Chapel Hill. Identification No. NTC02909959. https://clinicaltrials.gov/ct2/show/NCT02909959
42) Houghton, CA. Antioxidant, Anti-Inflammatory, and Microbial-Modulating Activities of Nutraceuticals and Functional Foods (2019) Article ID 2716870. https://doi.org/10.1155/2019/2716870 https://onlinelibrary.wiley.com/doi/10.1155/2019/2716870
43) Broccoraphanin. CS Health. https://www.cs-health.com/pages/broccoraphanin. Accessed August 1, 2024.
44) Brader L, Overgaard A, Christensen LP, Jeppesen PB, Hermansen K. Polyphenol-Rich Bilberry Ameliorates Total Cholesterol and LDL-Cholesterol when Implemented in the Diet of Zucker Diabetic Fatty Rats. The Review of Diabetic Studies. 2013 Winter, 10(4): 270-282. Doi:10.1900/RDS.2013.10.270 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160013/
45) Filosa S, Di Meo F, Crispi S. Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regen Res [serial online] 2018 [cited 2020 Dec 10]; 13:2055-9. https://journals.lww.com/nrronline/pages/default.aspx
46) Lila MA. Anthocyanins and Human Health: An In Vitro Investigative Approach. J Biomed Biotechnol. 2004;2004(5):306-313. doi:10.1155/S111072430440401X. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1082894/
47) Gonçalves AC, Nunes AR, Falcão A, Alves G, Silva LR. Dietary Effects of Anthocyanins in Human Health: A Comprehensive Review. Pharmaceuticals (Basel). 2021;14(7):690. Published 2021 Jul 18. doi:10.3390/ph14070690 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308553/
48) Frustaci A, Neri M, Cesario A, et al. Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic Biol Med. 2012;52(10):2128-2141. doi:10.1016/j.freeradbiomed.2012.03.011 https://www.sciencedirect.com/science/article/abs/pii/S0891584912001827
49) Liu Y, Yang Z, Du Y, Shi S, Cheng Y. Antioxidant interventions in autism spectrum disorders: A meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2022;113:110476. doi:10.1016/j.pnpbp.2021.110476 https://www.sciencedirect.com/science/article/pii/S0278584621002359
50) Ghanizadeh A, Akhondzadeh S, Hormozi M, Makarem A, Abotorabi-Zarchi M, Firoozabadi A. Glutathione-related factors and oxidative stress in autism, a review. Curr Med Chem. 2012;19(23):4000-4005. doi:10.2174/092986712802002572 https://www.eurekaselect.com/article/44606